Persistent Overexpression of Phosphoglycerate Mutase, a Glycolytic Enzyme, Modifies Energy Metabolism and Reduces Stress Resistance of Heart in Mice

نویسندگان

  • Junji Okuda
  • Shinnichiro Niizuma
  • Tetsuo Shioi
  • Takao Kato
  • Yasutaka Inuzuka
  • Tsuneaki Kawashima
  • Yodo Tamaki
  • Akira Kawamoto
  • Yohei Tanada
  • Yoshitaka Iwanaga
  • Michiko Narazaki
  • Tetsuya Matsuda
  • Souichi Adachi
  • Tomoyoshi Soga
  • Genzou Takemura
  • Hiroshi Kondoh
  • Toru Kita
  • Takeshi Kimura
چکیده

BACKGROUND Heart failure is associated with changes in cardiac energy metabolism. Glucose metabolism in particular is thought to be important in the pathogenesis of heart failure. We examined the effects of persistent overexpression of phosphoglycerate mutase 2 (Pgam2), a glycolytic enzyme, on cardiac energy metabolism and function. METHODS AND RESULTS Transgenic mice constitutively overexpressing Pgam2 in a heart-specific manner were generated, and cardiac energy metabolism and function were analyzed. Cardiac function at rest was normal. The uptake of analogs of glucose or fatty acids and the phosphocreatine/βATP ratio at rest were normal. A comprehensive metabolomic analysis revealed an increase in the levels of a few metabolites immediately upstream and downstream of Pgam2 in the glycolytic pathway, whereas the levels of metabolites in the initial few steps of glycolysis and lactate remained unchanged. The levels of metabolites in the tricarboxylic acid (TCA) cycle were altered. The capacity for respiration by isolated mitochondria in vitro was decreased, and that for the generation of reactive oxygen species (ROS) in vitro was increased. Impaired cardiac function was observed in response to dobutamine. Mice developed systolic dysfunction upon pressure overload. CONCLUSIONS Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase

Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vi...

متن کامل

Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase.

Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vi...

متن کامل

Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.

Emerging proteomic evidence suggests that acetylation of metabolic enzymes is a prevalent post-translational modification. In a few recent reports, acetylation down-regulated activity of specific enzymes in fatty acid oxidation, urea cycle, electron transport, and anti-oxidant pathways. Here, we reveal that the glycolytic enzyme phosphoglycerate mutase-1 (PGAM1) is negatively regulated by Sirt1...

متن کامل

Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2

Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage-induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubi...

متن کامل

Glycolytic enzymes can modulate cellular life span.

An unbiased screen for genes that can immortalize mouse embryonic fibroblasts identified the glycolytic enzyme phosphoglycerate mutase (PGM). A 2-fold increase in PGM activity enhances glycolytic flux, allows indefinite proliferation, and renders cells resistant to ras-induced arrest. Glucosephosphate isomerase, another glycolytic enzyme, displays similar activity and, conversely, depletion of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013